DiANNA: a web server for disulfide connectivity prediction

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DiANNA: a web server for disulfide connectivity prediction

Correctly predicting the disulfide bond topology in a protein is of crucial importance for the understanding of protein function and can be of great help for tertiary prediction methods. The web server http://clavius.bc.edu/~clotelab/DiANNA/ outputs the disulfide connectivity prediction given input of a protein sequence. The following procedure is performed. First, PSIPRED is run to predict the...

متن کامل

Web supplement “DiANNA 1.1: An extension of the DiANNA web server for ternary cysteine classification”

DiANNA (1,2) is a recent state-of-the-art artificial neural network and web server, which determines the cysteine oxidation state and disulfide connectivity of a protein, given only its amino acid sequence. Version 1.1 of DiANNA (3) has extended functionality for cysteine oxidation state prediction. By using a support vector machine (SVM) with spectrum kernel, DiANNA 1.1 predicts whether a cyst...

متن کامل

DISULFIND: a disulfide bonding state and cysteine connectivity prediction server

DISULFIND is a server for predicting the disulfide bonding state of cysteines and their disulfide connectivity starting from sequence alone. Optionally, disulfide connectivity can be predicted from sequence and a bonding state assignment given as input. The output is a simple visualization of the assigned bonding state (with confidence degrees) and the most likely connectivity patterns. The ser...

متن کامل

DiANNA 1.1: an extension of the DiANNA web server for ternary cysteine classification

DiANNA is a recent state-of-the-art artificial neural network and web server, which determines the cysteine oxidation state and disulfide connectivity of a protein, given only its amino acid sequence. Version 1.0 of DiANNA uses a feed-forward neural network to determine which cysteines are involved in a disulfide bond, and employs a novel architecture neural network to predict which half-cystin...

متن کامل

DBCP: a web server for disulfide bonding connectivity pattern prediction without the prior knowledge of the bonding state of cysteines

The proper prediction of the location of disulfide bridges is efficient in helping to solve the protein folding problem. Most of the previous works on the prediction of disulfide connectivity pattern use the prior knowledge of the bonding state of cysteines. The DBCP web server provides prediction of disulfide bonding connectivity pattern without the prior knowledge of the bonding state of cyst...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nucleic Acids Research

سال: 2005

ISSN: 0305-1048,1362-4962

DOI: 10.1093/nar/gki412